
EEB 201:
Introduction to R

for Ecology and Evolutionary Biology

Introduction to dynamic modeling

Professor Jamie Lloyd-Smith

Learning objectives for my section

By the end of this section you will:

• Have a working knowledge of control statements in R

• Be able to write your own computer programs to simulate and plot
population dynamics (in discrete time).

• Convert your simulation to a function, and write a program to
perform sensitivity analysis.

• Have seen how to write your own computer programs to simulate
and plot population dynamics in continuous time (ODE models)

Lightning review…

Programming in R

• Scripts are simply a collection of commands saved in a text file.

• Make sure you use a non-formatted text editor, not a word

processor!

• Save the script in your working directory

• Run the script using the source() command

• Functions are objects in R's workspace (just like variables)

• We can define functions to do specific tasks.

• Note: we need to get functions into R’s workspace, by

source-ing them once (or entering at the command line).

Flow control: conditional execution

• Sometimes we only want to execute part of our program under

certain conditions.

• Use an if statement

• express your condition as a logical expression

xx > 10 xx == 2

xx >= yy length(xx) != 0

xx < 2 | xx > 20

• then you can set a block of code to be executed only if that

condition is fulfilled

Flow control: conditional execution

Syntax in R

if (logical_expression) {
expression_1
...

}

or for two options

if (logical_expression) {
expression_1
...

} else {
expression_2
...

}

Flow control: looping

• Often there will be tasks that you want to repeat many times.
• Can accomplish this using a for loop or a while loop.

• for loops
• Use to repeat a fixed number of times.
• Define a vector with a set of values, and go through the loop
once for each value.
• Often: use index variable, e.g. (ii in 1:10)

• while loops
• Use to repeat until some condition isn't met anymore.
• Define the logical condition that needs to be satisfied.
• Repeat the loop until the condition is false.

Flow control: looping

Syntax in R – for loops

for (xx in 1:100) {
expression_1
...

}

or more generally

for (xx in someVector) {
expression_1
...

}

Syntax in R – while loops

while (logical_expression) {
expression_1
...

}

Flow control: looping

Example

• Two ways of doing an operation 10 times

• Example: calculating compound interest on your bank balance for
10 years

With a while loop

money <- 100
interest <- 0.03

tt <- 1

while (tt <= 10) {
money <- money*(1+interest)
tt <- tt+1

}

With a for loop

money <- 100
interest <- 0.03

for (tt in 1:10) {
money <- money*(1+interest)

}

Programming style

• Be clear rather than clever.

• You'll be glad when you have to come back to a program you

wrote two years ago…. to analyze new data or modify your

analysis.

• Use meaningful variable names

• birthRate and probSurvival instead of b and p

• When using simple variable names (x, y, i, j, etc), it's better to

use double letters (xx, yy) since they're easier to find (and

replace) using automated text search functions.

Programming style

• Comments! # you can never have too many

• Put a line or two of comments at the top of your program to say

what it does.

• Use 'sub-headings' to mark sections of code as well

• White space

• leave blanks lines to separate blocks of code

• use indentation consistently to indicate lines of code

within loops or if statements

• R doesn't insist on this like some languages, but it will help

you keep your thinking straight, keep your

parentheses matched up, and avoid bugs.

Pseudo-code

• Pseudo-code is an informal way to plan out the structure and

logic of your programs.

• When pseudo-coding, DON’T worry about the syntax of the

programming language you're using, but DO pay attention to

the variables and flow control structures you will use.

• Because the basic structures of many high-level programming

languages are the same, your pseudo-code will translate

easily R, Matlab, python, or many other languages.

Pseudo-code example

Goal: Determine how many students pass the bootcamp.

set the number of passes to zero

set the number of fails to zero

loop over the number of students in the class

if the student completed their exercises from day 1

add one to the number of passes

or else if they didn’t complete their exercises

add one to the number of fails

print “Come on, this is the first thing we’ve asked you do in grad

school!”

show the result

Exercise break: Pseudo-code

The geometric growth model is the simplest model for population

growth in discrete time. It assumes that every year the size of the

population changes by the same factor, R.

N(t+1) = R N(t)

Exercise: write pseudo-code for a program that simulates the

growth of a population for 10 years, starting with N=100 animals and

assuming R = 1.05, and prints the final population size.

Bonus: modify the pseudo-code so the program will make a plot of

N versus t.

Terminology: Ingredients of a dynamic model

State variables: quantities that describe the entities of
interest for your model.

e.g. population size, disease prevalence

Parameters: quantities that govern the dynamics, but don’t
describe the state of the system and (typically) don’t
change over time.

e.g. per capita birth rate, carrying capacity,
transmission rate

Dynamic equations: a set of equations or rules specifying
how state variables change over time, as a function
of current and past values of the state variables.

General layout of modeling scripts

1. Setup statements, if needed (e.g. loading packages)

2. Input data, set parameter values, and/or set initial conditions

3. Perform the calculations

4. Display the results by plotting, saving, or showing on-screen.

One useful habit is to lay out the program in pseudocode, then use

the pseudocode as commented headings in your real code.

Exercise break: your first model

1. Modify the pseudocode for your geometric growth model, using

this general layout as a template.

2. Fill this in with actual R code, so you have a program that

simulates the geometric growth model for given initial value (N0)

and R, and plots the result.

1. Setup statements, if needed (e.g. loading packages)

2. Input data, set parameter values, and/or set initial conditions

3. Perform the calculations

4. Display the results by plotting, saving, or showing on-screen.

A program for the geometric model

geometricGrowthScript.R
a script to simulate and plot the discrete logistic model

Setup

Set initial conditions and parameter values

initialize variable to a vector of NA values

use a loop to iterate the model the desired number of times

plot the results

Exercise break: your first model
1.

2. Fill this in with actual R code, so you have a program that

simulates the geometric growth model for given initial value (N0)

and R, and plots the result.

- Save this script, with an appropriate name. Your first modeling script!

3. Modify this program to simulate the discrete logistic growth model,

which is defined by this equation:

What do you need to change in the code? (how many lines will change?)

4. Play around with your model. Use different parameter values of

N0 and R, to figure out the conditions where your population will

approach carrying capacity, shrink to zero, or do something else.

So that was fun.

But also kind of annoying.

Wouldn’t it be nice if there was an efficient way to re-run
your program with different parameter values?

Programming your own functions

Writing your own functions is the most powerful way to make R work

flexibly and efficiently for you.

 User-defined functions enable you to reduce long stretches of

complicated programming to a single command.

A function takes in arguments, performs some operations, and

returns a value.

To define a function, you need to

• choose a name for the function (avoid reserved words)

• define the arguments that need to be passed to the function

• define the operations

• set what value the function returns

Programming your own functions

R syntax
name <- function(argument_1, argument_2, ...) {

expression_1
expression_2
...
return(output)

}

Example: program to build a three-digit number

> numberify <- function(xx, yy, zz) {
+ myNumber <- xx * 100 + yy * 10 + zz
+ return(myNumber)
+ }

Inputs: default values for arguments

You can assign default values to function arguments by giving them

a value in the function definition.
> numberify <- function(xx=1, yy=1, zz=1) {
+ myNumber <- xx * 100 + yy * 10 + zz
+ return(myNumber)
+ }

Any argument with a default value is optional when you call the

function. If you pass fewer values than the function has

arguments, then R will assign them from left to right, unless you

name the arguments as you pass values.

> numberify(3)

> numberify(yy=3)

> numberify()

> numberify(3,2)

The function workspace and variable scope

• When a function is executed, R sets aside memory for a separate

workspace for the function to operate.

• The function can define new variables and conduct all its

operations in complete isolation from the main workspace.

• When the operations are complete, the function returns the

appropriate quantity and all other information in the function

workspace is lost.

 If you want to use something outside the function, you

need to return it!

Stopping and outputs

The function will continue evaluating until:

• it hits the first return() statement, after which it returns the

requested value and quits.

- note that there can be multiple return() statements in a

function, e.g. in a branching program structure

• it runs out of commands to run, without hitting a return()

statement.

– sometimes the returned value isn't the point of the function, e.g. in a

function whose purpose is to make a plot.

– In this case, if you try to assign the function output to a variable, it returns

the value of the last expression it evaluated (even if NULL).

If you want something returned, code it explicitly with return().

Return to logistic model

How can we program the discrete logistic model as a function?

• what do we want it to do?

• what arguments do we want to pass to it?

• what outputs do we want?

(Pseudo)code for a model function is very similar to a script,

except many of the parameter values and initial conditions are often

passed as arguments to the function, where they were set 'manually'

in the script.

Example: converting a model script to a function

By converting a script to a function, you can make it quick and easy to run

the model with different parameter values or initial conditions.

The conversion process is easy – for example:

Simple model script

Define parameter values and ICs

RR <- 1.05

N0 <- 100

ttMax <- 10

Initialize vector to hold output

NN <- rep(NA,ttMax+1)

NN[1] <- N0

Use a for loop to step forward

for (tt in 1:ttMax){

NN[tt+1] <- RR*NN[tt]

}

plot(1:(ttMax+1),NN,lty=2,type=‘l’,...

xlab=‘t’, ylab=‘Population size’)

Function version

geomFun <- function(RR, N0, ttMax){

Initialize vector to hold output

NN <- rep(NA,ttMax+1)

NN[1] <- N0

Use a for loop to step forward

for (tt in 1:ttMax){

NN[tt+1] <- RR*NN[tt]

}

plot(1:(ttMax+1),NN,lty=2,type=‘l’,

... xlab=‘t’, ylab=‘Population

size’)

}

Basic change: just
moved parameters,

ICs from body of script
to function arguments

Example: converting a model script to a function

By converting a script to a function, you can make it quick and easy to run

the model with different parameter values or initial conditions.

The conversion process is easy – for example:

Simple model script

Define parameter values and ICs

RR <- 1.05

N0 <- 100

ttMax <- 10

Initialize vector to hold output

NN <- rep(NA,ttMax+1)

NN[1] <- N0

Use a for loop to step forward

for (tt in 1:ttMax){

NN[tt+1] <- RR*NN[tt]

}

plot(1:(ttMax+1),NN,lty=2,type=‘l’,...

xlab=‘t’, ylab=‘Population size’)

Function version

geomFun <- function(RR, N0, ttMax){

Initialize vector to hold output

NN <- rep(NA,ttMax+1)

NN[1] <- N0

Use a for loop to step forward

for (tt in 1:ttMax){

NN[tt+1] <- RR*NN[tt]

}

plot(1:(ttMax+1),NN,lty=2,type=‘l’,

... xlab=‘t’, ylab=‘Population

size’)

return(NN)

}

Basic change: just
moved parameters,

ICs from body of script
to function arguments

Example: converting a model script to a function

Now you can run the full model, for any parameter values and initial

conditions, using a single statement (by calling the function).

> geomFun(RR=1.01, N0=200, ttMax=20)

> myOutput <- geomFun(RR=1.01, N0=200, ttMax=20)

Exercise break

Convert your discrete logistic model into a function.

Use this function to explore the model’s dynamics with ease and grace.

Exploring your model systematically:

sensitivity analysis

Pseudocode for a sensitivity analysis

Define parameter values; use a vector to hold a range of values for the

parameter(s) you wish to vary.

Initialize a matrix to collect all outputs

Use a for loop to repeatedly run the model and collect output

NOTE: this for loop is NOT over the timesteps of the model, it is over the set

of different parameter values for which you want to run the model.

Use your function to run the model in a single line within the loop.

analyze results

Now you can run your whole model in a single line.

You’re in a position to do fancier things, such as running the model many

times to analyze the sensitivity to different parameter values.

Sensitivity analysis: response to parameter values

-1.0 -0.5 0.0 0.5 1.0

0
2

0
4

0
6

0
8

0
1

0
0

Sensitivity to value of r_d

Instantaneous growth rate

P
o

p
u

la
tio

n
 a

t t
im

e
 =

 5

How does the population size in 5 years depend on growth rate rd?

(initial conditions and other parameter values held constant)

growth rate rd

To make a plot of model summary output
versus parameter value

Define parameter values

for parameter of interest, make a vector of values you want to consider

Initialize vector to hold summary values

Use a for loop to repeatedly run the model and plot output

You are looping over the list of values you want to use for the

parameter you’re varying.

Each time through loop, run the model with the current parameter

values and store the summary values in the ith element of your

results vector

Plot the results vector versus the vector of parameter values.

-1.0 -0.5 0.0 0.5 1.0

0
20

4
0

60
80

1
00

Instantaneous growth rate

P
op

u
la

tio
n

 a
t t

im
e

=
 5

Sensitivity analysis of discrete logistic model
plot population size at t=5 for range of rd values

set parameter values
ttCollect <- 5
N0 <- 50
KK <- 100
rdVec <- seq(-0.5, 0.5, by=0.1) # vector of values for key parameter

initialize vector with null values
nnVec <- rep(NA, 1, length(rdVec))

loop over values of key parameter, and run model for each value
for (ii in 1:length(rdVec)) {

logisticOutput <- discreteLogisticFun(N0, rd=rdVec[ii], KK,
PLOTFLAG=0)

nnVec[ii] <- logisticOutput[ttCollect]
}

plot the results
plot(rdVec, nnVec, xlab='Instantaneous growth rate, r_d',

ylab=paste('Population at time = ',as.character(ttCollect)),
type='b', col='red', main='Sensitivity to value of r_d')

A script for sensitivity analysis

To plot many overlaying curves

Define parameter values

for parameter of interest, make a vector of values you want to consider

Initialize empty plot window to catch all the resulting plots

plot(0, type='n',… etc)

Use a for loop to repeatedly run the model and plot output

You are looping over the list of values you want to use for the

parameter you’re varying.

Each time through loop, run the model with the current parameter

values and plot the results using lines()

0 50 100 150 200

0
50

1
00

15
0

20
0

To make many plots in different sub-windows

Define parameter values

for parameter of interest, make a vector of values you want to consider

Initialize plot window to have right number of rows and columns

par(mfrow=c(3,3))

Use a for loop to repeatedly run the model and plot output

You are looping over the list of values you want to use for the

parameter you’re varying.

Each time through loop, run the model with the current parameter

values and plot the results using plot()

0 50 100 150 200

0
5

0
10

0
1

5
0

20
0

r_d = -0.1

N

0 50 100 150 200

0
5

0
10

0
1

5
0

20
0

r_d = 0.1

N

0 50 100 150 200

0
5

0
10

0
1

5
0

20
0

r_d = 1.2

N

0 50 100 150 200

0
50

1
00

15
0

2
0

0

r_d = 1.9

N

0 50 100 150 200

0
50

1
00

15
0

2
0

0

r_d = 2.2

N

0 50 100 150 200

0
50

1
00

15
0

2
0

0

r_d = 2.54

N

0 50 100 150 200

0
50

1
0

0
15

0
2

0
0

r_d = 2.58

N

0 50 100 150 200

0
50

1
0

0
15

0
2

0
0

r_d = 2.7

N

0 50 100 150 200

0
50

1
0

0
15

0
2

0
0

r_d = 2.9

N

Discrete-time models

Strengths

• Seasonal systems

• Discretized data

• Easy coding!

)()1(tNRtN

K

N
rN

dt

dN
1

Continuous-time models

Strengths

• Non-seasonal systems

• Events occur at any time

• Easier math analysis

Difference equations, maps ODEs (ordinary differential eqs)

Simulating an ODE model in R

• install package 'deSolve'

• load the package into memory using library(deSolve)

We will use a function called lsoda that is a versatile and robust

numerical integrator for ordinary differential equations.

• powerful tool but you need to interact with it in a very specific

way – be careful with syntax!

Syntax for lsoda

Generic syntax for lsoda is:

output <- lsoda(init, tseq, ODEfunction, pars)

where:

init is the initial value of the state variable

tseq is a vector of the time points where the model will be evaluated

ODEfunction is a place-holder for the name of the function holding the

model equations

pars is a vector containing any parameters used in the model

output is the variable where lsoda will return its results.

Syntax for lsoda

The function holding the model equations must have syntax:

ODEfunction <- function(tt, yy, pars) {

derivs <- [insert model equations]

return(list(derivs))

}

where:

tt is a variable used by R to keep track of the timestep

yy is the state variable (or vector of state variables, for multi-variate

models)

pars is your vector of model parameters

derivs is an internal variable that records the time series of results

lsoda example: exponential growth

expGrowthODE <- function(tt, NN, pars) {

derivs <- pars['rr'] * NN

return(list(derivs))

}

init <- 1

tseq <- seq(0, 20, by=0.01)

pars <- c(rr = 0.1)

Then call with:

expOutput <- lsoda(init, tseq, expGrowthODE, pars)

Note new way of indexing a vector.
Access with pars['rr']
Don't need to use this method, but
it's useful when you have lots of
parameters.

Output from lsoda

The output from our command:

expOutput <- lsoda(init, tseq, expGrowthODE, pars)

will be a matrix made up of two column vectors.

The first column will be the time points where the state of the system is

recorded, and the second column will be the corresponding values of

the state variable. > expOutput
time 1

[1,] 0.00 1.000000
[2,] 0.01 1.001001
[3,] 0.02 1.002002
[4,] 0.03 1.003005
...

So we can plot the dynamics with:

plot(expOutput[,1], expOutput[,2], col='blue', type='l')

Exercise: modify code to model logistic growth

logisticGrowthODE <- function(tt, NN, pars) {

derivs <- pars['rr'] * NN * (1 - NN/pars['KK'])

return(list(derivs))

}

init <- 1

tseq <- seq(0, 20, by=0.01)

pars <- c(rr = 0.1, KK = 100)

Then call with:

logOutput <- lsoda(init, tseq, logisticGrowthODE, pars)

